Variants of a-T-menability for actions on non-commutative Lp-spaces

نویسنده

  • Baptiste OLIVIER
چکیده

We investigate various characterizations of the Haagerup property (H) for a second countable locally compact group G, in terms of orthogonal representations of G on Lp(M), the non-commutative Lp-space associated with the von Neumann algebra M. For a semi-finite von Neumann algebra M, we introduce a variant of property (H), namely property HLp(M), defined in terms of orthogonal representations on Lp(M) which have vanishing coefficients. We study the relationships between properties (H) and (HLp(M)) for various von Neumann algebras M. We also characterize property (H) in terms of strongly mixing actions on Lp(M) for some finite von Neumann algebras M. We finally give constructions of proper actions of groups with the Haagerup property by affine isometries on Lp(M) for some algebras M, such as the hyperfinite II∞ factor B(l2)⊗R.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group Actions on Banach Spaces and a Geometric Characterization of A-t-menability

We prove a geometric characterization of a-T-menability through proper, affine, isometric actions on subspaces of Lp[0, 1] for 1 < p < 2. This answers a question of A. Valette. M. Gromov defined a-T-menability of a group Γ [Gr1, 6.A.III] as a strong opposite of Kazhdan’s property (T). Later a-T-menability turned out to be equivalent to the Haagerup approximation property, which arose in the stu...

متن کامل

Kazhdan and Haagerup Properties from the Median Viewpoint

We prove the existence of a close connection between spaces with measured walls and median metric spaces. We then relate properties (T) and Haagerup (a-T-menability) to actions on median spaces and on spaces with measured walls. This allows us to explore the relationship between the classical properties (T) and Haagerup and their versions using affine isometric actions on L-spaces. It also allo...

متن کامل

EMBEDDINGS OF NON - COMMUTATIVE Lp - SPACES INTO NON - COMMUTATIVE L 1 - SPACES , 1 < p < 2 Marius Junge

It will be shown that for 1 < p < 2 the Schatten p-class is isometrically isomorphic to a subspace of the predual of a von Neumann algebra. Similar results hold for non-commutative Lp(N, τ)-spaces defined by a finite trace on a finite von Neumann algebra. The embeddings rely on a suitable notion of p-stable processes in the non-commutative setting. Introduction and Notation The theory of p-stab...

متن کامل

Rosenthal operator spaces

In 1969 Lindenstrauss and Rosenthal showed that if a Banach space is isomorphic to a complemented subspace of an Lp-space, then it is either a Lp-space or isomorphic to a Hilbert space. This is the motivation of this paper where we study non–Hilbertian complemented operator subspaces of non commutative Lp-spaces and show that this class is much richer than in the commutative case. We investigat...

متن کامل

ar X iv : m at h / 03 07 16 9 v 1 [ m at h . FA ] 1 1 Ju l 2 00 3 On Subspaces of Non - commutative L p - Spaces

We study some structural aspects of the subspaces of the non-commutative (Haagerup) Lp-spaces associated with a general (non necessarily semi-finite) von Neumann algebra a. If a subspace X of Lp(a) contains uniformly the spaces lnp , n ≥ 1, it contains an almost isometric, almost 1-complemented copy of lp. If X contains uniformly the finite dimensional Schatten classes S p , it contains their l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013